
VerticaPy
Python API for Vertica Data Science at Scale
Machine Learning
-
Classification
Predict a Categorical Response -
Regression
Predict a Numerical Response -
Time Series
Predict Dynamically -
Clustering & Anomaly Detection
Find Clusters and Anomalies -
Decomposition & Preprocessing
Decompose and Preprocess -
Pipeline
Create ML Pipelines -
memModel
Independent ML models -
Examples
Models Usage Examples
Tools
API Reference
verticapy.learn.cluster
Class | Definition |
---|---|
BisectingKMeans | Creates a BisectingKMeans object using the Vertica BisectingKMeans algorithm. |
DBSCAN | Creates a DBSCAN object using the DBSCAN algorithm as defined by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu. |
KMeans | Creates a KMeans object using the Vertica k-means algorithm. |
verticapy.learn.decomposition
Class | Definition |
---|---|
PCA | Creates a PCA (Principal Component Analysis) object using the Vertica PCA algorithm. |
SVD | Creates a SVD (Singular Value Decomposition) object using the Vertica SVD algorithm. |
verticapy.learn.ensemble
Class | Definition |
---|---|
IsolationForest | Creates an IsolationForest object using the Vertica IFOREST algorithm. |
RandomForestClassifier | Creates a RandomForestClassifier object using the Vertica random forest algorithm. |
RandomForestRegressor | Creates a RandomForestRegressor object using the Vertica random forest algorithm. |
XGBoostClassifier | Creates a XGBoostClassifier object using the Vertica XGB_CLASSIFIER algorithm. |
XGBoostRegressor | Creates a XGBoostRegressor object using the Vertica XGB_REGRESSOR algorithm. |
verticapy.learn.linear_model
Class | Definition |
---|---|
ElasticNet | Creates a ElasticNet object using the Vertica linear regression algorithm. |
Lasso | Creates a Lasso object using the Verticalinear regression algorithm. |
LinearRegression | Creates a LinearRegression object using the Vertica linear regression algorithm. |
LogisticRegression | Creates a LogisticRegression object using the Vertica logistic regression algorithm. |
Ridge | Creates a Ridge object using the Vertica linear regression algorithm. |
verticapy.learn.memmodel
Class | Definition |
---|---|
memModel | Creates platform-independent machine learning models that you can export as SQL or Python code for deployment in other environments. |
verticapy.learn.metrics
Function | Definition |
---|---|
accuracy_score | Computes the Accuracy Score. |
anova_table | Computes the Anova Table. |
auc | Computes the ROC AUC (Area Under Curve). |
classification_report / report | Computes a classification report using multiple metrics (AUC, accuracy, PRC AUC, F1...). |
confusion_matrix | Computes the Confusion Matrix. |
critical_success_index | Computes the Critical Success Index. |
explained_variance | Computes the Explained Variance. |
f1_score | Computes the F1 Score. |
informedness | Computes the Informedness. |
log_loss | Computes the Log Loss. |
markedness | Computes the Markedness. |
matthews_corrcoef | Computes the Matthews Correlation Coefficient. |
max_error | Computes the Max Error. |
mean_absolute_error | Computes the Mean Absolute Error. |
mean_squared_error | Computes the Mean Squared Error. |
mean_squared_log_error | Computes the Mean Squared Log Error. |
median_absolute_error | Computes the Median Absolute Error. |
multilabel_confusion_matrix | Computes the Multi Label Confusion Matrix. |
negative_predictive_score | Computes the Negative Predictive Score. |
prc_auc | Computes the PRC AUC (Area Under Curve). |
precision_score | Computes the Precision Score. |
recall_score | Computes the Recall Score. |
r2_score | Computes the R2 Score. |
regression_report | Computes a regression report using multiple metrics (r2, mse, max error...). |
specificity_score | Computes the Specificity Score. |
verticapy.learn.model_selection
Function | Definition |
---|---|
autoML | Tests multiple models to find the ones which maximize the input score. |
bayesian_search_cv | Computes the k-fold bayesian search of an estimator using a random forest model to estimate a probable optimal set of parameters. |
best_k | Finds the k-means k based on a score. |
cross_validate | Computes the k-fold cross-validation of an estimator. |
elbow | Draws the an elbow curve. |
enet_search_cv | Computes the k-fold grid search using multiple enet model. |
gen_params_grid | Generates the estimator grid. |
grid_search_cv | Computes the k-fold grid search of an estimator. |
learning_curve | Draws the learning curve. |
lift_chart | Draws a lift chart. |
parameter_grid | Generates the list of the different input parameters grid combinations. |
plot_acf_pacf | Draws ACF and PACF Charts. |
prc_curve | Draws a precision-recall curve. |
randomized_features_search_cv | Computes the k-fold grid search of an estimator using different features combinations. |
randomized_search_cv | Computes the k-fold randomized search of an estimator. |
roc_curve | Draws a receiver operating characteristic (ROC) curve. |
stepwise | Uses the stepwise algorithm to find the most suitable number of features when fitting the estimator. |
validation_curve | Draws the Validation curve. |
verticapy.learn.naive_bayes
Class | Definition |
---|---|
BernoulliNB | i.e. NaiveBayes with param nbtype = 'bernoulli'. |
CategoricalNB | i.e. NaiveBayes with param nbtype = 'categorical'. |
GaussianNB | i.e. NaiveBayes with param nbtype = 'gaussian'. |
MultinomialNB | i.e. NaiveBayes with param nbtype = 'multinomial'. |
NaiveBayes | Creates a NaiveBayes object using the Vertica Naive Bayes algorithm. |
verticapy.learn.neighbors
Class | Definition |
---|---|
KernelDensity | Creates a KernelDensity object. |
KNeighborsClassifier | Creates a KNeighborsClassifier object using the k-nearest neighbors algorithm. |
KNeighborsRegressor | Creates a KNeighborsRegressor object using the k-nearest neighbors algorithm. |
LocalOutlierFactor | Creates a LocalOutlierFactor object using the Local Outlier Factor algorithm as defined by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. |
NearestCentroid | Creates a NearestCentroid object using the k-nearest centroid algorithm. |
verticapy.learn.pipeline
Class | Definition |
---|---|
Pipeline | Creates a Pipeline object, sequentially applying a list of transformations and a final estimator. The intermediate steps must implement a transform method. |
verticapy.learn.preprocessing
Class / Function | Definition |
---|---|
Balance | Creates a view with an equal distribution of the input data based on the response_column. |
CountVectorizer | Creates a Text Index which will count the occurences of each word in the data. |
MinMaxScaler | i.e. Normalizer with param method = 'minmax'. |
Normalizer | Creates a Vertica Normalizer object. |
OneHotEncoder | Creates a Vertica OneHotEncoder object. |
RobustScaler | i.e. Normalizer with param method = 'robust_zscore'. |
StandardScaler | i.e. Normalizer with param method = 'zscore'. |
verticapy.learn.svm
Class | Definition |
---|---|
LinearSVC | Creates a LinearSVC object using the Vertica SVM algorithm. |
LinearSVR | Creates a LinearSVR object using the Vertica SVM algorithm. |
verticapy.learn.tree
Class | Definition |
---|---|
DecisionTreeClassifier | Single Decision Tree Classifier. |
DecisionTreeRegressor | Single Decision Tree Regressor. |
DummyTreeClassifier | A classifier that overfits the training data. |
DummyTreeRegressor | A regressor that overfits the training data. |
verticapy.learn.tsa
Class | Definition |
---|---|
SARIMAX | Creates an SARIMAX object using the Vertica linear regression algorithm. |
VAR | Creates an VAR object using the Vertica linear regression algorithm. |
verticapy.learn.utilities
Class | Definition |
---|---|
check_model | Checks if the model already exists. |
load_model | Loads a Vertica model and returns the associated object. |